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ABSTRACT

The cart-and-pendulum system is a highly nonlinear and under-actuated system that is a great source 
of interest and motivation for researchers all over the world. There are various configurations of the 
cart-and-pendulum system that finds wide applications in areas of manufacturing, robotics and control. 
This paper presents an offline mode control of the Flexible Inverted Pendulum (FIP), which is an 
extended version of conventional rigid-link pendulum system. The flexibility induced in the pole gives 
an additional degree of freedom to the system. The nonlinear differential equations were derived using 
Newton’s second law of motion. The study inculcates Fuzzy-based Adaptive Neuro Fuzzy Inference 
System (ANFIS) controllers for achieving the desired objective. The performance of controllers was 
measured and compared in a Matlab-Simulink environment. The study considered the effect of friction 
during motion of the proposed system. The results clearly showed that the ANFIS controller effectively 
mimics and optimises the behaviour of the Fuzzy controller. The number of Fuzzy rules were also 
significantly reduced using the ANFIS techniques.  
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INTRODUCTION

The cart-and-pendulum system belongs to a category of highly nonlinear, multivariable and 
intricate systems that find extensive applications in industry (Prasad et al., 2014). The cart-

and-pendulum system comprises a rigid 
pole hinged to a movable cart that exists in 
various configurations (Soto & Campa, 2015). 
It is a highly dynamic system that mimics 
the behaviour of many practical systems 
like elastic columns (Gao, 2012; Azimi & 
Koofigar, 2015), rockets, walking robots etc. 
(Loram & Lakie, 2002). In this paper, we 



Ashwani Kharola and Pravin Patil

1190 Pertanika J. Sci. & Technol. 25 (4): 1189 - 1202 (2017)

have considered an offline mode control of the Flexible Inverted Pendulum (FIP) through 
Fuzzy-based ANFIS controllers. The elasticity induced in the pendulum makes its dynamics 
more complex compared to the conventional rigid pendulum system (Xu & Yu, 2004). It is 
an important factor, which is to be considered during designing of flexible structures and 
buildings (Kawaji & Kanazawa, 1991). The literature suggests that an ample amount of work 
has been carried out for controlling these nonlinear systems. According to Itik and Salamci 
(2006) a Sliding Mode Control (SMC) can be successfully applied to damp vibrations of an 
elastic beam acting as a cantilever. A mathematical model of the beam was developed using 
ordinary differential equations. The experiments performed on the beam system illustrated the 
satisfactory performance of the SMC controller. 

Kong (2009) proposed an intelligent Fuzzy proportional-derivative control of the Flexible 
Inverted Pendulum (FIP) system. The author used the Euler-Lagrange energy technique 
for modelling of the proposed system. The study further compared the Fuzzy proportional-
derivative technique with the classical proportional-derivative approach. Tang and Ren (2009) 
presented a dynamic model of the planar Flexible Inverted Pendulum using the Floating Frame 
Of Reference Formulation (FFRF) technique. The state space equations for the proposed system 
were derived and validated by means of a simple low-pass filter. Zarafshan and Moosavian 
(2011) proposed a Rigid-Flexible Interactive Dynamics Modelling (RFIM) for control of 
the multi-body systems. The proposed approach combines the Lagrange and Newton-Euler 
methods for developing motion equations of rigid and flexible members. The results revealed 
the accuracy of the proposed approach for dynamic modelling of mobile robotic systems. Bui 
et al. (2011) designed three controllers, namely the OFCHA (Optimal Fuzzy Control Using 
Hedge Algebras), FCHA (Fuzzy Control Using Hedge Algebras) and CFC (Conventional Fuzzy 
Control) for control of nonlinear systems. The proposed controllers were applied to control 
the damped elastic-jointed inverted pendulum under periodic follower force at the upright 
position. The results that showed better performance of the OFCHA and FCHA controllers 
compared to the CFC controllers. 

Litak and Coccolo (2012) presented the dynamics of the elastic inverted pendulum with 
tip mass under horizontal harmonic excitation. The authors examined the Melnikov Chaos and 
Stationary Chaos for fractal borders between basins of attraction. Yu et al. (2012) considered 
the mathematical model of the Linear Quadratic Regulator (LQR)-based Sugeno Neural 
Controller to control the flexible double-inverted pendulum. The simulation results showed 
better performance of the neural controller compared to the LQR controller. A Fuzzy Takagi-
Sugeno-Kang (TSK) controller to stabilise flexible rotary joint manipulator was proposed 
by Akbari et al. (2012). A solenoid spring was connected between the actuator output and 
joint input, thus inducing flexibility in the system. Experimental results showed excellent 
performance of the proposed controller in controlling the flexible joint manipulator. Abdullahi 
et al. (2013) presented the fuzzy control and pole placement control of vibration and tip 
deflection of a single link flexible manipulator. The fuzzy controller provides damping to the 
joint, which minimises vibrations and tip deflection, whereas pole placement control keeps 
the system pole at a desired location. 
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Semenov et al. (2015) examined control of the elastic inverted pendulum subjected to 
hysteretic nonlinearity at the point of suspension. The study considered an algorithm based 
on a bionic model for control of the proposed system. Numerical simulations were further 
performed to verify the results. The elastic inverted pendulum as a nonlinear energy harvester 
model was proposed by Halvorsen and Litak (2015). The authors derived a set of Fokker-
Planck equations to obtain an expression for probability density of the system. A dynamic 
equilibrium criteria for control of the elastic inverted pendulum with tip mass was examined 
by Gorade et al. (2015). The mathematical model of the proposed system was framed using 
the Euler-Lagrange analysis. The results collected after simulation of the above system were 
further compared with the experimental data of the actual plant.

In a study by Shahbazi et al. (2016), the control dynamics of the Spring-Loaded Inverted 
Pendulum (SLIP) at steady and transition states were examined. The approach realised the 
behaviour of the proposed system during running, walking and walk-run transitions. The study 
further utilised different gaits generated by means of hybrid automation to illustrate synthesis 
of behaviour for the SLIP system. 

MODELLING OF FIP SYSTEM

The mathematical model of the FIP system was built combining the dynamic behaviour of 
both the rigid and beam theories (Dadios, 1997). The nonlinear differential equation for the 
FIP was derived using Newton’s second law of motion. The deflection of the elastic pole 
gives an additional degree of freedom to the system. A free-body-diagram of the FIP system 
illustrating complete dynamics is shown in Figure 1 (Bayramoglu & Komurcugil, 2013). The 
FIP system comprises a flexible pendulum of mass (m) and length (L) hinged to a movable 
cart of mass (M). A control force, F, is required to drag the cart in a horizontal direction. The 
angles of the rigid and flexible pendulum from the vertical axis were θ and θt respectively. 
The other important attributes considered were breadth of pendulum (b), depth of pendulum 
(d), elasticity of pendulum (e), friction coefficient (u) and acceleration due to gravity (g). The 
values of the different attributes considered for simulation are presented in Table 1.
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Table 1 
Values of Different Attributes for Simulation 

S. 
No

Attribute Value

1 Mass of pendulum (m) 0.8 kg
2 Mass of cart (M) 3.0 kg
3 Length of pendulum (L) 1.5 m
4 Breadth of pendulum (b) 0.05 m
5 Depth of pendulum (d) 0.008 m
6 Elasticity of pendulum (e) 0.18 Pascal
7 Gravity (g) 9.81 m/s2

8 Friction coefficient (u) 0.1 Nm/s
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The equations for motion of the FIP system were derived as follows:

i. Equation for rigid pendulum

                (1)

ii. Equation for flexible pendulum

                   (2)

iii. Equation for cart

                   (3)

where K  =   and r =  

The above equations were used for building a Simulink model of the FIP system as given in 
Figure 2. 
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Fuzzy-Based ANFIS Control of the FIP System 

The Fuzzy logic theory is a reasoning-based soft-computing technique widely used by 
researchers in control of nonlinear processes (Wang & Tan, 1997). It was initially introduced 
by Zadeh (1965), who highlighted the basic concept of Fuzzy representation and the Fuzzy 
Coordinate system. Fuzzy logic is an important artificial tool comprising of IF-THEN 
based Fuzzy rules designed based on expert knowledge (Alcala et al., 2009). A basic Fuzzy 
architecture comprises a fuzzification interface that receives crisp values as input and converts 
it into Fuzzy input. The Fuzzy input is subjected to the Fuzzy inference engine, which converts 
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it to Fuzzy output by a set of Fuzzy rules. The Fuzzy output thus obtained is further converted 
into a crisp value using a defuzzification interface (Bordon et al., 2000). A schematic view of 
the Fuzzy architecture is shown in Figure 3.      
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The fuzzification of input variables was achieved using nine Gaussian-shaped membership 
functions as shown in Figure 4. The linguistic variables considered for defining of membership 
functions are as follows: Negative Low-NL, Negative Medium-NM, Negative Small-NS, 
Zero-ZE, Positive Small-PS, Positive Medium-PM and Positive Large-PL. These linguistic 
variables were used for building of IF-THEN Fuzzy rules for the controller as given in Table 2. 
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Table 2 
Fuzzy Control Rules for Cart and Pendulum Controllers 

Force (F) Cart velocity
Cart position NL NM NS ZE PS PM PL

NL NL NL NM NS ZE ZE ZE
NM NL NM NS NS ZE ZE ZE
NS NM NM NS ZE ZE PS PM
ZE NM NS ZE ZE PS PS PM
PS NM NS ZE PS PS PM PL
PM NS ZE PS PS PM PM PL
PL NS ZE PS PM PM PL PL
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The fuzzy control rules mentioned above for the cart-and-pendulum sub-system were 
designed by experts based on their experience and prior knowledge of the proposed system. 
A set of 49 IF-THEN Fuzzy rules were developed to effectively control the proposed system.  

The Fuzzy rules mentioned in Table 2 were further represented in a three-dimensional 
representation by a Surface viewer as shown in Figure 5. 

Table 2 (continue)

Force (F) Pendulum angular velocity
Pendulum angle NL NM NS ZE PS PM PL

NL NL NL NM NS ZE ZE ZE
NM NL NM NS NS ZE ZE ZE
NS NM NM NS ZE ZE PS PM
ZE NM NS ZE ZE PS PS PM
PS NM NS ZE PS PS PM PL
PM NS ZE PS PS PM PM PL
PL NS ZE PS PM PM PL PL
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Artificial neural networks comprise numerous inter-connected information processing 
elements called neurons. These are arranged in a pattern similar to the cerebral cortex portion 
of the human brain. These networks were organised in different layers as shown in Figure 6. 
The layers were connected to each other with the help of nodes having an activation function. 
Inputs were given to the network via an input layer that was further linked to hidden layers. 
Hidden layers performed processing on the inputs by adjusting their connection weights. The 
outputs were generated from the network with the help of output layers. 
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ANFIS belongs to a class of adaptive networks that are functionally equivalent to Fuzzy 
inference systems (Buragohain, 2008). These are hybrid learning algorithms widely used to 
optimise and mimic responses of nonlinear controllers (Tatikonda et al. 2000). The training in 
ANFIS was performed using a hybrid learning algorithm (Shoorehdeli et al. 2009) that uses 
the least square method (Kubacek et al., 1978) and back-propagation learning algorithm (Li 
et al. 2012) for its tuning. In this study the results from simulation of a Fuzzy controller were 
collected and applied for training of the ANFIS controller. A total of 176 data samples were 
collected and stored in M-file for training. The number of training epochs and error tolerance 
was set to 50 and 0, respectively. A view of loading and training of data samples in ANFIS is 
shown in Figure 7. and Figure 8,  
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During training, grid partition method generates an initial Fuzzy Inference Structure (FIS) 
as shown in Figure 9. The errors obtained after training of five Gaussian shaped membership 
functions for the cart-and-pendulum controller were 3.381e-005 and 0.000224, respectively. 
A view of the modified membership function and surface viewer after training for the cart 
controller can be seen in Figure 10 and Figure 11, respectively.   
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SIMULATION RESULTS

The simulations were performed in Matlab, with a simulation time of 10 seconds. A graphical 
view of the simulation responses and their comparison are given below.
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The simulation results given in Table 3 clearly showed that the ANFIS controller effectively 
mimiced the behaviour of a Fuzzy controller. Both the controllers took almost the same amount 
of time to stabilise a response for the cart position. The ANFIS controller showed a better 
maximum overshoot response compared to other controller. It was also observed from the 
results given above that both the controllers had an excellent steady state response.  
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The simulation results given in Table 4 showed that both the controllers were able to 
stabilise the complete system in 7.4 seconds. The ANFIS controller resulted in comparatively 
better overshoot compared to the Fuzzy controller. Excellent steady state response was obtained 
for both the controllers.  

Table 4 
Results Comparison for Cart Velocity  

Controller Settling time (sec) Max. overshoot  (degree) Steady State Error
ANFIS 7.5 sec 0.00575° 0
Fuzzy 7.5 sec 0.0058° 0
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Table 5 
Results Comparison for Pendulum Angle 

Controller Settling time (sec) Max. overshoot  (degree) Steady State Error
ANFIS 8.0 sec 0.013° 0
Fuzzy 8.5 sec 0.0105° 0

The simulation results given in Table 5 indicated that the settling time was reduced by 
0.5 seconds using the ANFIS controller. It was also observed that better maximum overshoot 
response was obtained using the Fuzzy controller. Again, both the controllers showed excellent 
response of steady state error. 

CONCLUSION

This paper highlighted soft-computing based control of the Flexible Inverted Pendulum (FIP) 
system, which is an upgraded version of the conventional rigid-link pendulum system. The 
study explained in brief the methodology and procedure opted for designing a Fuzzy and 
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Fuzzy-based ANFIS controller. The results derived from using the Fuzzy controller were 
collected and applied for tuning of the ANFIS controller. The ANFIS showed excellent training 
capacity and gave a minimal training error of 3.381e-005 and 0.000224 for cart-and-pendulum 
controllers, respectively. The ANFIS controller not only tuned, but also reduced the number of 
if-then Fuzzy rules by using only five Gaussian shaped membership functions for its training. 
It was clearly observed from the results (refer Table 3 to Table 5) that the ANFIS controller 
effectively mimicked the behaviour of a Fuzzy controller. It was also observed that the maximum 
overshoot responses using the ANFIS were better except for the case of pendulum angular 
velocity. Finally, it was observed that both the controllers showed excellent response towards 
steady state error. As an extension to future works, several other control algorithms like the 
Proportional-Integral-Derivative (PID), genetic algorithm and particle swarm optimisation are 
also under consideration for control of the proposed system.   
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